Stratified shear flow : from Rayleigh’s theorem to Richardson’s
criterion (exam 2019)

We counsider a stratified shear flow of velocity profile U(z)e, and temperature
profile T'(z) between two plates in z = z, and z = 2z, with z, < z,. We
neglect the dependence along y, the transverse direction. We neglect viscous
and thermal diffusion effects. The thermal expansion coefficient 5 > 0 connects
the density variation with the temperature profile

p=po— B (T —1Tp)

We consider normal modes of the form exp(i(kxz —wt)). We denote the velocity
components along x by U + eu, along z by 0 + ev, the temperature T + ¢ and
pressure P =0 + ep.

1. [1pt] In the case of constant temperature, what theorem justifies ignoring
the transverse direction to determine the stability conditions of this flow?

2. [1pt] Show that the linearized equations write
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3. [1pt] What is the name of this last equation? What does it physically
express?

4. [1pt] What is the name of the hypothesis which justifies its use while the
density of the flow is not constant?

5. [1pt] We next assume that the base temperature profile a growing function
of zie dT'/dz =T > 0. Is the flow stably stratified? Do you expect any
Rayleigh-Bénard instability to happen?

6. [3pts] We note U” = d?U/dz? and denote the derivation operator with
respect to z by D. Define and interpret a classical auxiliary variable
¥(2) exp(i(kx — wt)) to obtain the so-called Taylor-Goldstein equation
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where N is the so-called Brunt-Viisala frequency N2 o
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[1pt] Check that, from a dimensional analysis point of view, N is indeed
a frequency. To what limit equation discussed in class does the Taylor-
Goldstein equation simply in absence of stratification when N =0 ?

[1pt] Is this a classical or a polynomial eigenvalue problem?

[1pt] Separating the complex frequency in its real and imaginary part
(w=wy~+ iw;), remind the condition for linear instability.

[3pts] Using a similar technique as that used in class, show that a necessary
condition for the flow to be unstable is that there exist z €]z,; 2p[ such
that )
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N.B. As an intermediate step, you might first divide the Taylor-Goldstein
equation by (—iw + ikU), remember that [1|?> = ¢*1) (where * denotes
complex conjugation) and that for any complex number a = a,+ia;,1/a =
4 —ia; Why is that NOT a predictive criterion?
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[2pts] BEWARE, this is a calculus-intensive question. Consider now the
new variable
v

X et ikl

Show that the Taylor-Goldstein equation becomes

JUR/4= N2 ikU”
—iw + 1kU 2

D[(—iw + ikU)Dx] + |k — k*(—iw+ikU)| x =0

[3pts] By multiplying by x* and integrating, show that a necessary con-
ditions for the instability is given in terms of the Richardson number Ri
is that Jy €]z,; 2] such that

[1pt] What is the physical meaning behind this criterion? Is the temper-
ature gradient stabilizing or destabilizing?
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Figure 1: Solid curves represent the profile of velocity and background stratifi-
cation for R =3
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[1pt] The dispersion relation of a velocity and temperature distribution
represented in figure 1 (by its associated Brunt-Viisild frequency N? )
have been computed by Smyth and Peltier in 1989. They have considered
a localized temperature gradient of extension R, yielding

N?(z)=J(1- tanh2(Rz)) )
where J > 0, while the velocity was chosen as
U(z) = tanh(z).

Looking at the profile of N2, comment on the stably or unstably stratified
nature of the flow. Sketch a representative temperature distribution.

[1pt] The authors have used a numerical discretization method to deter-
mine the eigenvalues of the Taylor-Goldstein equation. With a central
second order differential finite difference scheme and N + 1 points regu-
larly spanning the interval [z,; 2], how many interior points are there and
how many eigenvalues are expected?

[1pt] We first consider R = 1, Ri(z) is depicted in figure 2a for several
values of J. Remembering the definition of the Richardson number Ri(z),
what is the value of its minimum Ri,;, as a function of J 7 Note that
tanh’(z) = 1 — tanh?(2).
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Figure 2: Richardson number Ri(z) as a function of z for J = 0.1 (blue), ,...,0.5
(green) for R =1 (a) and R =8 (b). The 1/4-limit is also depicted.
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[1pt] The isocontours of the growth-rate of the most unstable eigenvalues
are depicted in figure 3a in the k£ — J plane. Is the previously obtained
necessary condition for instability violated?

[1pt] For R = 8, Ri(z) is depicted in figure 2b for several values of J. For
which values of J do you expect the flow to be unstable? The dominant
eigenvalues have been computed by Smyth and Peltier (1989) in figure 4
for R=8 and J = 0.2,...,0.8. Do these results confirm your previous
answer?

[1pt] Figure 3a refers to the Kelvin-Helmholtz instability. What is the
consequence of increasing the strength of the stratification on its growing
rates? Propose a physical interpretation.

In figure 4b, the two unstable branches associated to the Kelvin-Helmholtz
instability switch to the so-called Holmboe instability for k& >~ 0.25.
What is the consequence of increasing the strength of the stratification
on Holmboe’s growing rates? And on its most unstable wavenumber?
Comparing figure 3a and 3b, what seems to be a necessary ingredient for
an Holmboe instability to occur?
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Figure 3: Isocontours of the growth-rate (full line) and frequency (dashed line)
of the most unstable eigenvalues for R =1 (a) and R =8 (b).

20. [2pts] Consider the frequency curves on figure 4 (no dashed line means

w, = 0 ). From visual inspection only, can you predict if the Kelvin-
Helmotz instability will be convective or absolute? Why? Same questions
for Holmboe instabilities.
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Figure 4: Growth-rate (full line) and frequency (dashed line) of the dominant
unstable modes for R = 8 and different values of J = 0.2,0.4,0.6 and 0.8.



