
Stratified shear flow : from Rayleigh’s theorem to Richardson’s
criterion (exam 2019)

We consider a stratified shear flow of velocity profile U(z)ex and temperature
profile T (z) between two plates in z = za and z = zb, with za < zb. We
neglect the dependence along y, the transverse direction. We neglect viscous
and thermal diffusion effects. The thermal expansion coefficient β > 0 connects
the density variation with the temperature profile

ρ = ρ0 − β (T − T0)

We consider normal modes of the form exp(i(kx−ωt)). We denote the velocity
components along x by U + ϵu, along z by 0 + ϵv, the temperature T + ϵθ and
pressure P = 0 + ϵp.

1. [1pt] In the case of constant temperature, what theorem justifies ignoring
the transverse direction to determine the stability conditions of this flow?

2. [1pt] Show that the linearized equations write

(−iω + ikU)u+
dU

dz
v = −ik p

ρ0
,

(−iω + ikU)v = − 1

ρ0

dp

dz
+
βg

ρ0
θ,

(−iω + ikU)θ +
dT

dz
v = 0,

dv

dz
+ iku = 0.

3. [1pt] What is the name of this last equation? What does it physically
express?

4. [1pt] What is the name of the hypothesis which justifies its use while the
density of the flow is not constant?

5. [1pt] We next assume that the base temperature profile a growing function
of z i.e. dT/dz = T ′ > 0. Is the flow stably stratified? Do you expect any
Rayleigh-Bénard instability to happen?

6. [3pts] We note U ′′ = d2U/dz2 and denote the derivation operator with
respect to z by D. Define and interpret a classical auxiliary variable
ψ(z) exp(i(kx− ωt)) to obtain the so-called Taylor-Goldstein equation

(−iω + ikU)
(
D2 − k2

)
ψ − ikU ′′ψ =

k2N2

−iω + ikU
ψ

where N is the so-called Brunt-Väisälä frequency N2 = βgT ′

ρ0
.
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7. [1pt] Check that, from a dimensional analysis point of view, N is indeed
a frequency. To what limit equation discussed in class does the Taylor-
Goldstein equation simply in absence of stratification when N = 0 ?

8. [1pt] Is this a classical or a polynomial eigenvalue problem?

9. [1pt] Separating the complex frequency in its real and imaginary part
(ω = ωr+ iωi), remind the condition for linear instability.

10. [3pts] Using a similar technique as that used in class, show that a necessary
condition for the flow to be unstable is that there exist z ∈]za; zb[ such
that

U ′′ ≤ 2 (−ωr + kU) kN2

ω2
i + (−ωr + kU)

2 .

N.B. As an intermediate step, you might first divide the Taylor-Goldstein
equation by (−iω + ikU), remember that |ψ|2 = ψ∗ψ (where * denotes
complex conjugation) and that for any complex number a = ar+iai, 1/a =
ar−iai

a2
r+a2

i
. Why is that NOT a predictive criterion?

11. [2pts] BEWARE, this is a calculus-intensive question. Consider now the
new variable

χ =
ψ√

−iω + ikU

Show that the Taylor-Goldstein equation becomes

D[(−iω + ikU)Dχ] +

[
k2
U ′2/4−N2

−iω + ikU
− ikU ′′

2
− k2(−iω + ikU)

]
χ = 0

12. [3pts] By multiplying by χ∗ and integrating, show that a necessary con-
ditions for the instability is given in terms of the Richardson number Ri
is that ∃y ∈]za; zb[ such that

Ri =
N(z)2

U ′(z)2
<

1

4
.

13. [1pt] What is the physical meaning behind this criterion? Is the temper-
ature gradient stabilizing or destabilizing?
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Figure 1: Solid curves represent the profile of velocity and background stratifi-
cation for R = 3

14. [1pt] The dispersion relation of a velocity and temperature distribution
represented in figure 1 (by its associated Brunt-Väisälä frequency N2 )
have been computed by Smyth and Peltier in 1989. They have considered
a localized temperature gradient of extension R, yielding

N2(z) = J
(
1− tanh2(Rz)

)
,

where J > 0, while the velocity was chosen as

U(z) = tanh(z).

Looking at the profile of N2, comment on the stably or unstably stratified
nature of the flow. Sketch a representative temperature distribution.

15. [1pt] The authors have used a numerical discretization method to deter-
mine the eigenvalues of the Taylor-Goldstein equation. With a central
second order differential finite difference scheme and N + 1 points regu-
larly spanning the interval [za; zb], how many interior points are there and
how many eigenvalues are expected?

16. [1pt] We first consider R = 1, Ri(z) is depicted in figure 2a for several
values of J . Remembering the definition of the Richardson number Ri(z),
what is the value of its minimum Rimin as a function of J ? Note that
tanh′(z) = 1− tanh2(z).
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Figure 2: Richardson number Ri(z) as a function of z for J = 0.1 (blue), , . . . , 0.5
(green) for R = 1 (a) and R = 8 (b). The 1/4-limit is also depicted.

17. [1pt] The isocontours of the growth-rate of the most unstable eigenvalues
are depicted in figure 3a in the k − J plane. Is the previously obtained
necessary condition for instability violated?

18. [1pt] For R = 8, Ri(z) is depicted in figure 2b for several values of J . For
which values of J do you expect the flow to be unstable? The dominant
eigenvalues have been computed by Smyth and Peltier (1989) in figure 4
for R = 8 and J = 0.2, . . . , 0.8. Do these results confirm your previous
answer?

19. [1pt] Figure 3a refers to the Kelvin-Helmholtz instability. What is the
consequence of increasing the strength of the stratification on its growing
rates? Propose a physical interpretation.
In figure 4b, the two unstable branches associated to the Kelvin-Helmholtz
instability switch to the so-called Holmboe instability for k ≥≈ 0.25.
What is the consequence of increasing the strength of the stratification
on Holmboe’s growing rates? And on its most unstable wavenumber?
Comparing figure 3a and 3b, what seems to be a necessary ingredient for
an Holmboe instability to occur?
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Figure 3: Isocontours of the growth-rate (full line) and frequency (dashed line)
of the most unstable eigenvalues for R = 1 (a) and R = 8 (b).

20. [2pts] Consider the frequency curves on figure 4 (no dashed line means
ωr = 0 ). From visual inspection only, can you predict if the Kelvin-
Helmotz instability will be convective or absolute? Why? Same questions
for Holmboe instabilities.
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Figure 4: Growth-rate (full line) and frequency (dashed line) of the dominant
unstable modes for R = 8 and different values of J = 0.2, 0.4, 0.6 and 0.8.
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